About 50 results
Open links in new tab
  1. numpy.linspace — NumPy v2.2 Manual

    numpy. linspace (start, stop, num = 50, endpoint = True, retstep = False, dtype = None, axis = 0, *, device = None) [source] # Return evenly spaced numbers over a specified interval. Returns num evenly spaced samples, calculated over the interval [ start , stop ].

  2. numpy.linspace — NumPy v2.3.dev0 Manual

    numpy. linspace (start, stop, num = 50, endpoint = True, retstep = False, dtype = None, axis = 0, *, device = None) [source] # Return evenly spaced numbers over a specified interval. Returns num evenly spaced samples, calculated over the interval [ start , stop ].

  3. numpy.linspace — NumPy v2.1 Manual

    numpy. linspace (start, stop, num = 50, endpoint = True, retstep = False, dtype = None, axis = 0, *, device = None) [source] # Return evenly spaced numbers over a specified interval. Returns num evenly spaced samples, calculated over the interval [ start , stop ].

  4. How to create arrays with regularly-spaced values - NumPy

    Use numpy.linspace if you want the endpoint to be included in the result, or if you are using a non-integer step size. numpy.linspace can include the endpoint and determines step size from the num argument, which specifies the number of elements in the returned array.

  5. numpy.linspace — NumPy v1.22 Manual

    numpy. linspace (start, stop, num = 50, endpoint = True, retstep = False, dtype = None, axis = 0) [source] ¶ Return evenly spaced numbers over a specified interval. Returns num evenly spaced samples, calculated over the interval [ start , stop ].

  6. numpy.logspace — NumPy v2.2 Manual

    >>> y = np. linspace (start, stop, num = num, endpoint = endpoint)... >>> power (base, y). astype (dtype)...

  7. numpy.arange — NumPy v2.2 Manual

    In such cases, the use of numpy.linspace should be preferred. The built-in range generates Python built-in integers that have arbitrary size , while numpy.arange produces numpy.int32 or numpy.int64 numbers.

  8. numpy.meshgrid — NumPy v2.2 Manual

    meshgrid is very useful to evaluate functions on a grid. If the function depends on all coordinates, both dense and sparse outputs can be used.

  9. NumPy: the absolute basics for beginners — NumPy v2.2 Manual

    You can also use np.linspace() to create an array with values that are spaced linearly in a specified interval: >>> np . linspace ( 0 , 10 , num = 5 ) array([ 0. , 2.5, 5. , 7.5, 10. Specifying your data type

  10. numpy.sin — NumPy v2.2 Manual

    Plot the sine function: >>> import matplotlib.pylab as plt >>> x = np . linspace ( - np . pi , np . pi , 201 ) >>> plt . plot ( x , np . sin ( x )) >>> plt . xlabel ( 'Angle [rad]' ) >>> plt . ylabel ( 'sin(x)' ) >>> plt . axis ( 'tight' ) >>> plt . show ()

Refresh