
numpy.linspace — NumPy v2.2 Manual
numpy. linspace (start, stop, num = 50, endpoint = True, retstep = False, dtype = None, axis = 0, *, device = None) [source] # Return evenly spaced numbers over a specified interval. Returns num evenly spaced samples, calculated over the interval [ start , stop ].
numpy.linspace — NumPy v2.3.dev0 Manual
numpy. linspace (start, stop, num = 50, endpoint = True, retstep = False, dtype = None, axis = 0, *, device = None) [source] # Return evenly spaced numbers over a specified interval. Returns num evenly spaced samples, calculated over the interval [ start , stop ].
numpy.linspace — NumPy v2.1 Manual
numpy. linspace (start, stop, num = 50, endpoint = True, retstep = False, dtype = None, axis = 0, *, device = None) [source] # Return evenly spaced numbers over a specified interval. Returns num evenly spaced samples, calculated over the interval [ start , stop ].
How to create arrays with regularly-spaced values - NumPy
Use numpy.linspace if you want the endpoint to be included in the result, or if you are using a non-integer step size. numpy.linspace can include the endpoint and determines step size from the num argument, which specifies the number of elements in the returned array.
numpy.linspace — NumPy v1.22 Manual
numpy. linspace (start, stop, num = 50, endpoint = True, retstep = False, dtype = None, axis = 0) [source] ¶ Return evenly spaced numbers over a specified interval. Returns num evenly spaced samples, calculated over the interval [ start , stop ].
numpy.logspace — NumPy v2.2 Manual
>>> y = np. linspace (start, stop, num = num, endpoint = endpoint)... >>> power (base, y). astype (dtype)...
numpy.arange — NumPy v2.2 Manual
In such cases, the use of numpy.linspace should be preferred. The built-in range generates Python built-in integers that have arbitrary size , while numpy.arange produces numpy.int32 or numpy.int64 numbers.
numpy.meshgrid — NumPy v2.2 Manual
meshgrid is very useful to evaluate functions on a grid. If the function depends on all coordinates, both dense and sparse outputs can be used.
NumPy: the absolute basics for beginners — NumPy v2.2 Manual
You can also use np.linspace() to create an array with values that are spaced linearly in a specified interval: >>> np . linspace ( 0 , 10 , num = 5 ) array([ 0. , 2.5, 5. , 7.5, 10. Specifying your data type
numpy.sin — NumPy v2.2 Manual
Plot the sine function: >>> import matplotlib.pylab as plt >>> x = np . linspace ( - np . pi , np . pi , 201 ) >>> plt . plot ( x , np . sin ( x )) >>> plt . xlabel ( 'Angle [rad]' ) >>> plt . ylabel ( 'sin(x)' ) >>> plt . axis ( 'tight' ) >>> plt . show ()